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Mechanism-Based DNA-Protein Cross-Linking of Scheme 1
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Introduction of a covalent bond cross-linking a protein to its \ ENG N N
nucleic acid target can be used to stabilize a pretBINA . gy =0
complex or to investigate contacts between the two biopoly#ers. H,N" N TN
Many cross-linking methods rely on photochemical triggers to R
generate reactive intermediates of suitably modified nucleotides 8-0x0G - MutY
or amino acid residuesyhile other DNA—protein cross-links cross-link
are a natural result of oxidative damage to chromatin arising from
endogenous metal ions, oxidants, or ionizing radiatib®f the of the product is slow, providing a relatively long-livectFE
four bases, guanine is the most susceptible to oxidative damagecomplext” The high mutagenicity of 8-oxoG stems from the
but one of its common oxidation products, 8-oxb,dramati- misincorporation of A to form 8-oxoG:A mispairs, and the activity
cally more reactive due to its low redox potentiatQ.6 V7—° of MutY is therefore critical for prevention of deleterious DNA

compared to 1.29 V vs NHE for guanos}ﬁe Thus, placement !’nu.tati()rls%s Thus, SpeCiﬁC.S'OXO.G Crogs-linking_will also provi_d_e
of an 8-0x0G:C pair into a DNA duplex yields little perturbation  insight into the amino acid residues involved in the recognition
of DNA structure but significantly enhances DNA reactivity. Even 0f damaged and mismatched DNA by MutY.

though the one-electron oxidation of a DNA base may initially ~ In the experiment, four duplex oligomers were tested for

occur at a distant site, rapid electron transfer in the duplex will SPecific cross-linking triggered by the one-electron oxidantNa
result in exclusive formation of [8-oxoG}1112 IrClg!® (Figure 1). Oxidation of duple%-2 bound to MutY led to

formation of a cross-link, observed as a higher band in an SDS-
PAGE experiment® That the cross-link was formed to 8-oxoG
is supported by comparison of lanes 1 and 2 (Figure 1) in which
cross-linking only occurred to the 8-oxoG-containing strand.
Modest cross-linking was also observed with the 8-0xoG:C duplex
n5-6, which exhibits weaker binding to Mut¥.The G:A mispaired
substrate3-4 can also undergo A deglycosylation but does not

The ultimate fate of [8-0xoGt appears to mimic the urate
oxidation pathway leading, via 5-hydroxy-8-0xoG, to a guanidi-
nohydantoin moeity (Scheme )This mechanism likely involves
trapping of the initially formed radical cation by a solvent water
molecule; in the presence of bound protein, we reasoned that al
active site nucleophile might participate instead, leading to a
covalent DNA-protein cross-link analogous to 5-hydroxy-8- provide an oxidative cross-link to MutY since 8-0xoG is absent,

oxoguanosm_é‘f' _ _ ) and IV does not appreciably oxidize G%Like guanidinohy-

The E. coli DNA repair enzyme Mut¥® provides an ideal  gantoin, the cross-linked lesion was substantially alkali labile
system in which to test this cross-linking hypothesis. MutY binds  gjying ~75% DNA strand scission after treatment with 0.2 M
to 8-0xoG:A and G:A mispairs in duplex DNA and catalyzes piperidine at 90°C for 30 min (see Supporting Informatiof?).

deglycosylation of the '2deoxyadenosin&. Importantly, release To investigate the protein residue involved in cross-linking,
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1) 5’ TCATGGGTCOTCGGTATA 01
2) 3’ AGTACCCAGAAGCCATAT )

3) 5’ TCATGGGTCGTCGGTATA 35
4) 3’ AGTACCCAGAAGCCATAT

5) 5’ TCATGGGTCOTCGGTATA 26
6) 3’ AGTACCCAGCAGCCATAT

7) 5’ TCATGGGTCGTCGGTATA 150

8) 3’ AGTACCCAGCAGCCATAT

Figure 1. Cross-linking of wild-type MutY (600 nM) with various duplex
DNA substrates (20 nM) using 1QeM NaalrClg (10 mM NaR buffer,

pH 7, containing 100 mM NaCl, 15 min.). Lanes-& represent
experiments with duplex substrates in which strahé8, respectively,
were 3 end-labeled wit¥?P. The control lane was carried out with DNA 10 +
plus MutY in the absence of oxidarKy values are approximate and 8|
were taken from similar oligodeoxynucleotides containing the same
mispairs?! 6T .
4im || |
each cross-link may represent different stable conformers of the 2 ] |
cross-linked protein, perhaps due to protein oxidation with Ir 0 N B s B
but this remains to be confirmed experimentally. s X X X X 0
Complete characterization of the cross-link is in progress; = 3o o —'p: o
however, these initial studies demonstrate that a mild one-electron ; g g § g

oxidant, IV, can be used to generate an 8-oxd@sine cross-

link in yields comparable to other cross-linking agents. Given rigyre 2. (a) Crystal structufé of truncated wildtypeE. coli MutY with

the minimal structural perturbation of replagia G for an 8-0x0G,  pighlighted side chains of residues mutated for cross-linking experiments.
the preponderance of lysine residues in nucleic acid binding The DNA binding site is believed to be on the right-hand side near K142.
domains, and the commercial availability of both the 8-0X0G (b) Comparison of cross-linking ability of mutant forms of MutY to duplex
phosphoramidite and M&Cle, this cross-linking method should  1-2 using reaction conditions specified in Figure 1.

be generally applicable to many questions concerning pretein
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